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ABSTRACT

To understand Guif Stream meanders in the South Atlantic Bight, the growth of three-dimensional perturbations
along two-dimensional frontal zones is examined by using linearized primitive equations. The Fourier-Galerkin
method and the orthogonal collocation method are combined to formulate the spectral model. Emphasis is
placed on the effects of cross-frontal topographic slope on the stability of the front, and on the characteristics
of the most unstable modes. Attention is directed to the cross sections upstream and downstream of the Charleston
Bump, which is a topographic feature near 31°N. The major results obtained from this linear study are that 1)
the growth rate of the most unstable mode decreases and the associated phase speed increases after incorporating
cross-front topographic gradients; 2) the most unstable solution found in the region downstream of the Charleston
Bump has a slightly longer wavelength and slower phase speed than those found in the region upstream of

the Bump.

1. Introduction
a. Observed meanders

Finite amplitude wavelike meanders are dominant
mesoscale features of the Gulf Stream in the South
Atlantic Bight (SAB) (Fig. 1). Webster (1961) de-
scribed meanders off Onslow Bay as a type of skewed
wave motion that consists of an intense offshore flow
and a broad, confused onshore flow. In the 1970s and
1980s, several observational projects conducted in the
SAB provide us with a considerable amount of infor-
mation on meanders (Lee and Mayer 1979; Lee et al.
1981; Bane et al. 1981; Brooks and Bane 1983). A
typical meander consists of a southwestward extrusion
of warm Gulf Stream water, with cooler water entrained
between the extrusion and the stream. The cyclonic
circulation within the resulting cold  water dome is
consistent with upwelled isotherms, and the anticy-
clonic circulation within warm filaments is consistent
with the downwelled isotherms. A warm filament
reaches only a few tens of meters deep, while a cold
water dome can reach a depth more than 200 m and
extend shoreward beneath the warm filament. Mean-
ders can develop into so-called “backward breaking”
waves in two days. They occur on the average of once
per week.
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As meanders propagate northeastward in the SAB,
their scales generally increase and their phase speeds
decrease. Filaments off Georgia depicted by Lee et al.
(1981) have offshore scales between 30 and 40 km and
a depth of about 20 m. Their downstream scales range
from 100 to 200 km. Embedded cold cores move
downstream at speeds between 40 and 60 km day ™!
(Lee and Atkinson 1983). Scales become larger in the
region off South Carolina according to AXBT data an-
alyzed by Bane et al. (1981 ). Warm filaments are about
50 km wide in the offshore direction and about 50 m
deep. Downstream scales reach 200-300 km between
Charleston and Cape Hatteras. A decrease in the phase
speed between Charleston and Cape Hatteras was re-
ported by both Legeckis (1979) and Bane et al. (1981).
An average phase speed off Onslow Bay is approxi-
mately 35 km day ™! or less.

Many authors surmise that meanders result from
local barotropic and baroclinic instabilities. The pri-
mary objective of carrying out instability studies is to
find out how much of the observed phenomena can
be explained by linear theory and to answer the fol-
lowing questions: 1) Is the Gulf Stream really unstable?
2) What is the role played by the bottom topography
in producing meanders along the Gulf Stream front?
3) Are the changes of meander scales and propagation
speeds due to changing characteristics of the most un-
stable wave associated with mean conditions at different
cross sections?

b. Theoretical background

The classical linear mechanism of baroclinic insta-
bility considered by Charney (1947) and Eady ( 1949)
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Fi1G. 1. Satellite thermal image on 22 April 1980 showing meanders in the South Atlantic
Bight. (Image courtesy of O. Brown and R. Evans, University of Miami.)

explained the fact that growing disturbances both in
the atmosphere and in oceans have preferred scales.
Blumsack and Gierasch (1972) included the effect of
a uniform sloping bottom in the Eady model. In ad-
dition to the short-wave cutoff, they found a long-wave
cutoff. The most important result was that the flow
becomes stable if the bottom slope exceeds the isopyc-
nal slope. Johns ( 1988 ) considered the interplay of the
vertical variations of the potential vorticity gradient
and the bottom slope in his study of the Gulf Stream
near 74°W. He found that the unstable waves are sen-
sitive to the depth where the potential vorticity gradient
changes from positive to negative. The major effect of
the bottom slope was a decrease of growth rate at low
frequencies. Mclntyre (1970) solved a perturbed Eady
problem in which both horizontal and vertical gradients
operate simultaneously. He concluded that there is in-
stability at short wavelengths.

By including nongeostrophic effects, Stone (1966)
found three types of instabilities associated with dif-
ferent ranges of Richardson number, and later (Stone
1970), he found a secondary unstable branch that had
a shorter wavelength compared with Eady waves.
Moore and Peltier (1987) solved linearized primitive

equations to test stability of two-dimensional atmo-
spheric fronts. A combined method of Fourier-Gal-
erkin and orthogonal collocation is used in their spec-
tral model. In addition to a long wavelength Charney-
Eady mode of baroclinic instability, they successfully
captured the preferred scale of cyclogenesis in the at-
mosphere. Unlike the Charney-Eady waves, the new
mode found in their model was confined to the bottom
boundary. Their subsequent papers (Moore and Peltier
1989a,b) showed that quasigeostrophic theory not only
failed to account for the unstable, cyclone-scale mode,
it also rather severely distorted the long wavelength
Charney-Eady mode. The geostrophic momentum
approximation similarly filtered the cyclone-scale
mode, but it corrected the phase speed and growth rate

errors for the long waves that were introduced by the

quasigeostrophic approximation.

The development of frontal eddies along oceanic
boundary currents is more complicated due to the
presence of the coastline and the bottom slope. In the
application of his two-layer model to the Gulf Stream,
Orlanski (1969) demonstrated that topographical slope
is a stabilizing factor, while the height of the topography
is a destabilizing factor. However, his prescribed cross
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section had little resemblance to the Gulf Stream in
the SAB, and his two-layer model did not provide
enough vertical resolution, which is crucial because of
the sensitivity of the dispersion relation to the vertical
profile of the mean potential vorticity gradient (Johns
1988). Luther and Bane (1985) regarded Gulf Stream
meanders as spatially growing waves. They forced the
system with a wind stress and solved for resonant re-
sponses.

In the present study, the method used by Moore and
Peltier (1987) is adopted with the following modifi-
cations: 1) a coordinate transformation to map the
cross section with topography to a rectangular domain,
2) different basis functions to fit the boundary condi-
tion at the coast, and 3) a new approach to calculate
the barotropic pressure. (They used a nonhydrostatic
relation for barotropic pressure that was inconsistent
with the hydrostatic approximation used elsewhere in
their analysis. )

The following section describes procedures to form
the eigenvalue problem for the instability study of the
Gulf Stream. In section 3, we propose two analytical
cross sections to represent the mean conditions of the
Gulf Stream upstream and downstream of the
Charleston Bump. Section 4 is the application of the
model to the Gulf Stream front. Two cases, with or
without topography, have been analyzed for each cross
section. Section 5 discusses the stabilizing mechanism
of the bottom topography and mechanisms of unstable
short waves. Conclusions are given in section 6.

2. Formulation of an eigenvalue problem
a. The basic equations

A straight coastline is stipulated along the y axis,
with the x axis positive in the offshore direction and
the z axis positive upward (Fig. 2). A steady current,
V(x, z), flows parallel to the coast, which is in thermal
wind balance with a mean density field, o(x, z), ac-
cording to fV, = B,. Here B is the buoyancy of the
mean state defined as B = —gp(x, z)/po, where pg is
a reference density. All quantities related to the mean
flow are uniform in y but nonseparable functions of x
and z. We consider perturbed motions linearly super-
imposed on the mean state in a hydrostatic, Boussinesq
fluid. A middle-latitude fplane is used. Equations gov-
erning the evolution of the perturbations in conven-
tional Cartesian coordinates are

ou  du or
v == (21
a Ve T s (21
ov ov o
vl i+ uv +wh, = (2.1b
w Vg Tt 5y (>1P)
an
=or 2.1
3z (2.1c)
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FiG. 2. Schematic of model geometry.

du Jdv  Jdw

— 4+ —+—=90 2.1d

ox dy 9z ( )
ob ab
—+V—+uB,+ wB, = 0. (2.1e)
ot dy

The (x, y, z) components of the perturbation ve-
locity are (u, v, w); w is the perturbation pressure di-
vided by po, b is the perturbation buoyancy. Boundary
conditions are required to close the problem posed by
(2.1). Normal flow at the solid boundaries is null, and
the rigid-lid approximation is stipulated. Furthermore,
disturbances vanish at distances far from the coast.
Thus,

u=0 at x=0 and
m,uandv—>0 as x—> oo (2.2a)

w=0 at z=0 and

w=—u% at z=—h(x). (2.2b)

ox
A “‘sigma coordinate” mapping is applied to trans-
form the complicated cross section to a rectangular
one to facilitate the application of vertical boundary
conditions and the choice of basis functions. The co-
ordinate transformation and a new vertical velocity,
w, are

(2.3a)

¢=14+z/h(x)

1l

oh

— (= Du—. 2.3b
w=w—({— Du ™ ( )
Then, the transport form of variables u*, v*, and

b* is used such that

(u*, v*, b*) = (uh, vh, bh). (2.4)



NOVEMBER 1993

Finally, the problem will be solved in dimensionless
form. All quantities are scaled by their reference values
as follows:

(X, y)=(x,y)/ Lo, =5, t'=tf, h="h/H
(v, v") = (u*, v*)/uy, o = (Lo/uo)w
7 = (Ho/uofLo)w, b' = (Ho/uofLo)b*
B'= B/H\N}, V'=V/V,, (2.5)

where L is the horizontal length scale and Hy the ver-
tical length scale, uq is the typical perturbation velocity
times Hy, V, is the maximum of ¥, and N3 the max-
imum of the vertically averaged B,. Since the mean
field variables in (2.1) depend only on x and ¢, one
can assume that the solutions have the following func-
tional form;

(u', &) = Re[(d(x, §), &(x, {))e ]
(v', «, b') = Re[(iD(x, ),

(2.6a)

i#x, ), ib(x, £)e' ], (2.6b)

Here $ is the alongfront wavenumber and ¢ = o,
+ io;, where —g; is the growth rate; a disturbance is
said to be unstable if ¢; < 0; g, is the wave frequency;
the phase speed is given by —g,/8; Re[ ] denotes the
real part of the expression in the bracket. Including i
in the right-hand side of (2.6b) yields a set of equations
with all real coeflicients. Substituting (2.3), (2.4), and
(2.5) into (2.1), one obtains the following equations:

L PPN
(¢ + RoBV)i — D = hax+(§‘ l)axb (2.7a)

(o + RoBV)D — i1 — RoV,éi — RoV& = —Bhx

(2.7b)
. oF
b= P (2.7¢)
o ., 0&
Ec——ﬁv+&—0 (2.7d)
(o + RoBV)b — SB.ii — SB;&> =0, (2.7¢)

where Ro = V,/ f Ly is the Rossby number of the mean
flow, S = N3H3/(f?L3). The boundary conditions

~

(4,0, & % b)—>0 as x— o (2.8a)
=0 and at {=1. (2.8b)

b. Numerical formulation

Galerkin and collocation schemes are applied to
solve the problem described by (2.7) and (2.8). In the
Galerkin approach, weighting functions are the same
as the basis functions, which individually satisfy the
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boundary conditions. In the collocation approach,
weighting functions are Dirac delta functions centered
at collocation points. The choice of basis functions is
important in order to obtain accurate solutions. Gen-
erally speaking, a good choice will take into account
the boundary conditions. For example, a modified La-
guerre polynomial could be chosen for the Dirichlet
problem in a semi-infinite domain (Mellor 1962).
However, there are two additional ways to construct
global approximations to functions defined on a semi-
infinite domain: 1) map the semi-infinite domain into
a finite one and 2) truncate the domain to [0, L]. When
the last approach is used, exponential convergence can
be achieved only by increasing L while increasing the
truncation level (Boyd 1982).

In the present study, the Fourier-Galerkin method
is applied in the vertical with the exception of the ther-
modynamic equation (2.7¢), where, for reasons dis-
cussed later, Fourier collocation is used. In the cross-
front direction the domain is truncated at x = L and
the Fourier—Galerkin method is applied. This is equiv-
alent to forming the problem in a channel with the
expectation that if the channel is wide enough, the
waves spanning the channel do not affect the unstable
modes trapped along the front. Structure functions,
{#,D,d, b}, are spectrally decomposed into orthogonal
sets of basis functions in the vertical:

N

(@, 0, 7) = 2 (u,(x), v.(x), p(X))E, (2.9a)
v=0
. N

(&, b) = 2 (w,(x), b(x))F, (2.9b)
v=1

E, = cos(vm{) and F, =sin(vw{), (2.9¢)

where N is the truncation level. Substituting these ex-
pansions into Eqs. (2.7) results in a set of residual
equations, with the residuals consisting of wave com-
ponents that exceed the truncation level N (details are
provided in appendix A). It is required that each of
the residuals is orthogonal to a set of weighting func-
tions. Weighting functions for prognostic equations are
chosen so that the terms involving the eigenvalue, o,
are diagonal. Those for the diagnostic equations are
chosen so that the terms involving o and p are diagonal.
However, before deciding on the weighting functions,
one should understand the implication of the expan-
sions given by (2.9): the expansion for & satisfies the
boundary conditions (2.8), while the expansions for
4, D, and 7 imply that

on_ov_ ok
a9t ot

Strictly speaking, one cannot specify vertical
boundary conditions for quantities other than the ver-

tical velocity. Therefore, (2.10) overconstrains the
problem at { = 0 and ¢ = 1, so that error is incurred

¢=0 and {=1. (2.10)
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within the region of 0 < { <eand 1 —e < { < I;
however, ¢ decreases as the truncation level increases.
Furthermore, it has been shown in Moore and Peltier
(1987) that by comparing the result of the Galerkin
method, which uses these boundary conditions, with
the result of the shooting method, which does not, one
can apply these approximate boundary conditions
without affecting the interior solution significantly.
Therefore, the spectral weighting method is applied to
(2.7a,b,c, and d). However, there are difficulties in the
density equation (2.7e). The expansion of b implies

b=0 at ¢=0 and ¢=1. (2.10a)
On the other hand, (2.7¢) implies
(¢ + RoBV)b — SB,ii =0
at {=0 and ¢=1. (2.10b)

It is clear that (2.10a) and (2.10b) are inconsistent
when B, is not zero at the upper and lower boundaries.
Moore and Peltier ( 1987) found that expansions given
in (2.9) result in unacceptable “Gibbs” behavior in the

o, = =(RoB/(1 + 8,0)){E,VE, ) u, + b,
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structure function, 3, in the interior of the domain.
The Gibbs oscillations can be suppressed by increasing
the truncation level. However, they found that these
oscillations can be avoided entirely by applying the
orthogonal collocation method to the density equation.
Following Moore and Peltier (1987), the pseudo-
spectral weighting functions are chosen to be a set of
Dirac delta functions with collocation points equally
spaced within the interval (0, 1):

H,=5(5- 1) (2.11a)
=1 ‘Y — . s
G=yag Y=L2:- N (211b)

Note that 0 < {, < 1; therefore, the residual is never
evaluated at { = 0 and { = 1, and the apparent over-
constraint of b at { = 0 and 1 is avoided.

Each residual equation, formed from (2.7) and listed
in (A.1), is multiplied by the weighting functions E,,
F,, or H, and is integrated vertically from O to 1. Taking
advantage of the orthogonality of the trigonometric

-functions, one obtains the following differential equa-

tions:

ap, dh
o +(1/(1 + 8,0)){ELt — 1)F,) e b, (2.12a)

a0, = 8,1, + Ro/(1 + 8,0) {(EV<E,Yu, — B{E,VE,»v, + (E,V.F,>w,} — 8hd,,p, (2.12b)
ob, = SC.32 cos(vw§,)Bu(x, §,)u, + SCoy2 sin(vrl,) Bi(x, &,)w, — RoBCI2 sin(vr{, )V (x, §,)b, (2.12¢)

P =—b/ur for u=1 (2.13a)
1 (a

wu=——[&—ﬂv,‘} for p> 1. (2.13b)
T | Ox

Here, the operator { ) is defined as (R} = 2 fol Rd¢; the repeated subscript, v, represents summation from
0to N; C,, = 2 sin(vr¢,), and C,}C,, = é,,. Each of the prognostic equations in (2.12) has a term with the
coefficient, o, and together, they form a linear eigenvalue problem. The two diagnostic equations in (2.13) will
be used to eliminate w and p from the prognostic equations. Notice that the barotropic pressure, py, is excluded
from (2.13a). In rigid-lid models, internal modes are driven only by the baroclinic pressure gradient, and they
can be calculated independent of py. The external mode can be obtained from the following set of equations:

% _ gy =0 (2.14a)
ax
1 P}
ato = ~0.5Rof EVEo)o + 5 ‘Z—l;" - h%% — 0.5R0B{ EoVE, Yu, + 0.5( Eo({ — 1)F,) fc b, (2.14b)

(9 l a v
ot = o + 0.5R0[<E0VxEo>u0 — (EVEy) f} + 0.5R0{<E0VXE,,>u,, —— (EoViF) 5. }

ox

- 0.5R06{<E0VE,,> —~ ;1; <E0V;F,,>}v,, ~ Bhpo. (2.14c)

Equation (2.14a) is obtained by integrating the con-
tinuity equation, (2.13b), from the bottom to the top.
Equations (2.14b) and (2.14c) are obtained from
(2.12a)and (2.12b) when u = 0. A diagnostic equation
for p, can be obtained by cross differentiating (2.14b)
and (2.14¢) and can be used to solve for p,. Substituting

Do into (2.14b) and combining with the internal-mode
equations yields a complete set of equations for deter-
mining frontal instability.

One can either solve the equation set by means of
horizontal differencing or by a spectral transform in
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the horizontal. We follow the latter procedure so that
{u,, v, b,, Uy, po } , are spectrally expanded horizontally
using trigonometric functions:

(uO, uv) = z (u)\O, u)u/)\b)\
A=1
(v=1,2,-++,N) (2.15a)
{p03 U,,, bv} = z {(pX07 U)\V, b)\v)d))\}
A=0

(v=1,2,--+,N) (2.15b)

ATX . ATX
o\ = cosT and ¢, =sin A (2.15¢)
Using the orthogonal relationships, the diagnostic

equation for py and (2.12) become

Do = Px_'yl * {J']yO)\Vu)\O + J'ZyO)wu)\u
+ J%‘O)\uv)\u + J:O)\ub)\u} (2'16)
o'uxp = M:u)\vuku + MZu)\vv)\v + MI%}L)\Vb)\V (2'173')

vau = Mfu)\yu)\u + Mfu)\uv)\v + Mgu)\ub)\v (2- 17b)
MZu)\vu)\v + ng)\vv)\u + M?y.)\vb)w: (217C)

where Px_‘yls J'lyO)\ya J%O)\vs Jg())\vs J:O)\u’ and M:u)\v: LRI
M3, are defined in appendix A. A triangular trun-
cation scheme (. =0,1,+ - -, N;k=0,1,- -+, N— )
is used to truncate the Galerkin expansions. To
place the reduced eigen system into a standard form,
a mapping routine is used to organize wavenumbers
(x, ) into an increasing sequence. This allows one to
order the two-dimensional coefficients (u,,, V.., b..)
into a one-dimensional vector, X;, and to arrange the
four-dimensional matrix elements, M},,,to M3,,,, into
a two-dimensional matrix, E;. The detailed mapping
procedures are provided in appendix B. The procedure
results in a standard matrix eigenvalue problem,

EUXJ= O'X,'. (2.18)

With a prescribed mean flow, whenever a wave-
number is specified, (2.18) is solved by calling the sub-
routine EVCRG in the IMSL library (version 1.1,
1989) to obtain the eigen solutions. The number of
elements in the matrix grows proportional to the square
of the truncation level so that the model can be com-
putationally expensive if a high truncation level is re-
quired. Appendix C provides formulas to construct
mode structures in physical space and to diagnose en-
ergy budgets of the unstable modes. Appendix D is an
application of the model to stable waves in a channel,
which is used to verify the model.

ob,, =

3. Mean state of the Gulf Stream front

In the present study, analytic formulas are provided
to approximate the mean condition of the Gulf Stream.
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The bottom topography in the SAB generally consists
of a wide continental shelf and a sharp continental
slope, which is approximated by a hyperbolic tangent
function in the model:

X — Xm

h(x)=Hs+%(Hd—Hs)[l+tanh } (3.1)

Here H; is the depth over the shelf, and H; is the
maximum depth in the domain. The slope is deter-
mined by «, and the location of the maximum slope
is determined by x,,.

There were several multiyear experiments measuring
the downstream velocity and temperature of the Gulf
Stream in the SAB. Richardson et al. (1969) showed
direct transport measurements by dropsondes along
sections between the Florida Keys and Cape Fear dur-
ing 1965-68. They found that the transport increased
from 29.6 Sv off the Florida Keys to approximately 53
Sv off Cape Fear. For all sections, the mean current
had a single maximum at each depth, and the location
of the maximum velocity shifts offshore with increasing
depth. Vertical shears of the downstream velocity are
small on the offshore side of the stream. There were
no temperature measurements in this experiment.
More recently, using the data collected by PEGASUS
during the Sub-Tropical Atlantic Climate Studies, the
Florida Atlantic Coast Transport Study, and the Cape
Hatteras Experiment, Leaman et al. (1989) showed
the average velocity and temperature of the Gulf
Stream at 27°N, 29°N and off Cape Hatteras. Velocity
distributions were similar to those in Richardson et al.
(1969). Temperature was approximately in geostrophic
balance with the downstream velocity. The so-called
18° Water appears on the offshore side of the Gulf
Stream between 300 and 500 m.

To reproduce observed structures of the Gulf Stream,

- the following analytic formula of downstream velocity

is used; then a relationship between the horizontal gra-
dient of the buoyancy field and the vertical derivative
of the velocity is established according to the thermal-
wind balance:

Vix,z) =V, exp{zi—x%] (3.2)

5

Vo . A
Bix, z) = L0 [ oy (2o _ % da
xqA4 Xd dz

Zs

X exp[f— - X%] (3.3)

s

where

X,’ = X,‘(X) = [x- Xf(l -

z
ZS‘A)]/Xd G4

A=A0+2Z/Hd (35)
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2(Xa2 — Xq1)
Xay — —

dx Ha
dl _ —
[Xd,zz_]" _@H__x‘“ if X;<0 (3.6)
d
Xz2, 0 if X, >0.

Here, V), is the maximum velocity of the current, x;
defines the location of the surface velocity maximum,
x4 defines the width of the current, z; determines the
velocity decreasing rate against depth, and 4 determines
the eastward tilt of the maximum velocity as depth
increases. To obtain B(x, z), (3.3) is integrated nu-
merically. The integration begins at the eastern bound-
ary since isotherms there are nearly flat. The presence
of the Blake Plateau upstream of the Charleston Bump
results in considerably different topography compared
to that off Onslow Bay. Therefore, two sets of values

are given in Table 1 to form cross sections in regions’

upstream and downstream of the Charleston Bump,
respectively; see Figs. 3a and 3b. The maximum depth
is smaller, but the slope is steeper upstream of the
Bump. In addition to the difference in topography, the
Gulf Stream transport increases between the Florida
Keys and Cape Hatteras despite the slight decrease of
the core velocity.

The Gulf Stream given in Figs. 3a and 3b has features
similar to those observed by Richardson et al. (1969)
and Leaman et al. (1989). For example, the mean cur-
rent has only one maximum at each depth; the posi-
tions of the maximum velocity at each level shift east-
ward as depth increases; on the eastern side of the cur-
rent, the vertical gradient is almost zero near the
surface. The stream decelerates at the surface from cross
section I to cross section II, but it tends to increase
both the width and the depth. The increase of total
transport from 32 Sv to 52 Sv agrees with the obser-
vations. The decrease of the vertical density gradient
around 400-m depth indicates the location of the 18°
Water.

At each cross section, two frontal zones are exam-
ined; Iy and I; denote the frontal zones using the mean
condition at cross section I with and without a bottom
slope. Similar definitions are denoted by II; and II, at
cross section II. Scale quantities used in equation (2.5)
associated with both cross sections are given in Table
2. Numerical solutions of (2.18) for each front yield
the growth rate and phase speed spectra, —o;() and

TABLE 1. Quantities used to generate Figs. 3a and 3b. The scale
of Hy, Hy, and z, is in meters; the scale of a, X, X7, Xa1, and Xz is
in kilometers; and the scale of ¥, is in meters per second.

Cross
section H; Hy a Xxn Vo Ao 2z Xy Xa Xa
1 50 900 20 110 1.9 3.0 300 110 20 45
11 100 3000 55 150 1.7 50 450 120 28 50
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FiG. 3. Gulf Stream frontal zones in the South Atlantic Bight.
Solid contours are velocity; contour interval is 0.2 m s™'. Dashed
contours are isopycnals; contour interval is 0.5 kg m™>. (a) Cross
section I represents the Gulf Stream between Cape Canaveral and
Charleston; (b) cross section II represents the Gulf Stream between
Charleston and Cape Hatteras.

Con(B) = —a,(B)/ B, as functions of alongfront wave-
number, as well as the corresponding mode structures.
Discussion will be restricted to the first three unstable
modes.

4. Instability of the Gulf Stream front
a. Convergence of the model

One fundamental problem of spectral models is to
find the rate at which a truncated solution uy converges
to the real solution # and to estimate the error |ju
— uy|l. However, for numerical calculations, one can
only determine an appropriate N at which |uny,
— uy | is less than a given small number. Several factors
can affect the convergence rate, such as the truncation
of the offshore domain limit and the alongfront wave-
number. Of course, when the model is applied to dif-
ferent frontal zones, it may converge at different speeds;
e = 0.002 is chosen, which is less than 5% of the ei-
genvalues (growth rates in the present problem). The
truncation level N is determined according to

n=N-—1,N,N+ 1.
(4.1)

lloilns1 = oilnll <€ for
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TABLE 2. Scaling quantities used in (2.5) and resulting dimensionless parameters in (2.7).
Cross section f(sec™) H,y (m) Ly (km) Vo(ms™) M Ro S
1 7.27 X 107° 900 100 1.9 5.56 X 1073 0.261 0.852
11 7.79 X 1073 3000 100 1.7 1.53 X 1073 0.218 2.269

The required computing resource increases very
quickly as the truncation level goes up. For example,
it takes less than 1 second to solve equation (2.18) at
each given wavenumber when N = 10, approximately
20 seconds when N = 20, and approximately 350 sec-
onds when N = 30. First, the larger the alongfront
wavenumber is, the higher the truncation level should
be. Second, there is a general tendency of slower con-
vergence as L increases. Third, the front in cross section
II is wider compared to that in cross section I; thus, a
larger L and a higher truncation level might be bene-
ficial. Nevertheless, L = 3.5 and N = 28 are chosen for
all four frontal zones in the present study. Although,
as seen in Fig. 4, the convergence at short waves is not
as good as that at long waves, we think it is acceptable
even at wavenumber 7.0. Figure 5 shows the amplitude
of the perturbed velocity component, u, of the most
unstable mode at three different truncation levels. It
also indicates that N = 28 is sufficient to obtain a con-
verged solution.

b. The cross section upstream of the Charleston
Bump

Figures 6a and 6b display the growth rate and the
corresponding phase speed spectra of the first two un-
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FIG. 4. Convergence of the model at different alongfront wave-
numbers: (a) results from the front zone I, and (b) results from
front zone II,; wn is the nondimensional wavenumber, 8.

stable modes on the front, I,. The growth rate spectra
for long waves are similar to those of the classical un-
stable Charney-Eady waves, whereas they are consid-
erably different at short waves as nongeostrophic effects
become more important. Like most nongeostrophic
models, there are unstable solutions at short waves.
Stone (1970) found similar unstable branches for
Richardson number less than 2. He also mentioned
that these branches may still exist when the Richardson
number is greater than 2, but their growth rates were
so small that they fell within the error range of his
analysis. In the present study, even though the Rich-
ardson number, N3H3/V 3, is the order of 10, short-
wave branches can still be clearly identified. The reason
is that the horizontal gradients of the Gulf Stream front
also generate unstable short waves as seen in McIntyre
(1970).

The first mode, m;, has the most unstable wave at
the alongfront wavenumber 3.4 with a nondimensional
growth rate of 0.088, which is equivalent to a dimen-
sional wavelength of 185 km and an e-folding time
scale of 1.8 days. The growth rate of m; reduces slowly
on the short-wave side. The second mode, m,, has two
branches separated at wavenumber 5.0. On the long-
wave side, the maximum growth rate of 0.052 occurs
at wavenumber 4.1; on the short-wave side, the max-
imum growth rate of 0.062 occurs at wavenumber 7.5.
It is clear that m, has the largest growth rate among
short waves. Generally speaking, longer waves move
at slower speeds. The phase speed of the m, increases
quickly on the long-wave side and changes very little
on the short-wave side. The most unstable wave at
wavenumber 3.4 has a phase speed of about 0.049,
which corresponds to a dimensional propagation speed
of 30.8 km day~'; m, moves almost three times as fast
as my, and its phase speed increases linearly as the
wavenumber increases except for a small jump at
wavenumber 5.0 where the growth rate spectrum of
the m, reaches a minimum. The most unstable wave
of the m, has a phase speed of 0.177.

The growth rate and phase speed spectra with respect
to front I; are given in Fig. 7. It is obvious that topog-
raphy is a stabilizing factor. The reduction of the growth
rate is 38% for the first mode and 30% for the second.
A secondary effect of the topography is the shift of the
growth rate spectra toward long waves. The maximum
growth rate of m, is 0.055, occurring at wavenumber
3.0 in this case, which corresponds to a dimensional
wavelength of 215 km and an e-folding time scale of
2.9 days; m, is once again dominant among short
waves: it has the maximum growth rate of 0.042 at
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(a)

wn= 3.0

FiG. 5. Amplitude of perturbation velocity component u of the first unstable mode at three different truncation
levels: (a) is for frontal zone I;; (b) is for frontal zone II;.
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two most unstable modes growing on front I, a flat bottom case.
All quantities are nondimensionalized according to (2.5). F1G. 7. As in Fig. 6 except for front I, with bottom topography.
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wavenumber 6.5. The overall topographic effect on
phase speeds is the increase of phase speeds, especially
at long waves so that both m; and m, become less
dispersive. The phase speed of the most unstable wave
at wavenumber 3.0 reaches 0.062, which corresponds
to a dimensional propagation speed of 39.3 km day ~!.
The phase speed of m, is almost three times the phase
speed of m; at all wavenumbers.

Structure functions of m; and m; are given in Fig.
8 and Fig. 9, respectively. All unstable modes found
in the model are trapped near the front; m; extends
almost to the whole water column. Topography causes
noticeable changes near the shelf break where the
shoreward contours are squeezed toward the area of
greater depth by the continental shelf. On the seaward
side of the front, perturbation signals become stronger
and more surface trapped. The most obvious difference
between m; and m, is that the latter is surface trapped.
The second important difference is that m, appears
slightly offshore compared with the first mode; m, is
centered around x = 1.3, whereas m, is centered around
x = 1.0. The second mode in Fig. 9b is again surface
trapped although its vertical extension increases slightly
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in the case with topography. Moreover, this mode is
less affected by the continental shelf because it exists
farther offshore.

Mooring data obtained off the Georgia coast (Lee
and Atkinson 1983) show that the amplitude of per-
turbation velocity, dv,, is about 40 cm s~! or 20% of
the maximum velocity of the stream, ¥}, and the cor-
responding amplitude of perturbation temperature,
8T, is between 2°C and 3°C. We use the following
relation derived from (2.5) to estimate the amplitude
of temperature perturbation for 2 = 0.20, which is the
ratio of the amplitude of the observed perturbation
velocity to the maximum velocity of the Gulf Stream:

6T, = — rP(ﬁq)(Po(fLoVo/Ho)) C(42)
Vg g(dp/dT) To
where po = 1025 kg m™ is the reference density; coef-
ficient of thermal expansion, (dp/dT ),, is —0.254
kg m=3 °C™'; f, Ly, Hy, and V, have been given in
Table 2; b, = (b/h)max and v, = (V/h)max are the cal-
culated amplitudes of nondimensional perturbation
buoyancy and velocity, respectively. Using the front
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FIG. 8. The amplitude of perturbed velocities and buoyancy of the first unstable mode, m,:
(a) corresponds to front Iy; (b) corresponds to front I,.
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FIG. 9. As in Fig. 8 except for the second mode, m,.

zone, 1,, to represent the Gulf Stream between Cape
Canaveral and the Charleston Bump, the amplitude of
the most unstable wave shown in Fig. 8b is similar to
the observed; for a 20% variation in perturbation ve-
locity, the amplitude of temperature variation is 2.5°C.

The horizontal sections in Figs. 10 and 11 are total
fields constructed according to

_Pu), (Pov V(x, ).
V=— (—)l + (;‘:Z + Ve )j (433)

P ohu
Zb:(w'i'(f—l)gxz) (4.3b)
= Fix ¢y — L (poSLoVo/ Ho\ b

T=T(x,%) o (g(ap/aT)To) h (4.3¢)

They cover one wavelength in the alongfront direc-
tion and between x = 0.5 and 2.5 in the cross-front
direction where the unstable modes occur. Tempera-
ture and horizontal velocity plots are located at the
surface ({ = 1), and the vertical velocity plots are lo-
cated at { = 7/g.

The frontal zone, which is originally uniform in the
alongfront direction, has been distorted by the three-
dimensional unstable waves. The most unstable wave
along front Iy, upper panels in Fig. 10, has a cold center
along the shoreward side of the front, and the cold
water pushes the front offshore and intensifies the ther-
mal gradient across the front. The downstream scale
of this cold water is almost four times its own width.
The horizontal velocity shows the type of wave motion
described by Webster (1961). A cyclonic circulation
is associated with the cold water, and an anticyclonic
circulation is associated with a weaker warm anomaly
on the seaward side of the front, although it is not clear
in the plot of total velocity. The center of the cyclonic
circulation leads the center of the cold water by one-
eighth wavelength. Such a configuration causes energy
transfer from the mean potential energy to the eddy
potential energy. The vertical velocity shown in the
right panels indicates that upwelling (downwelling)
appears in the leading (trailing) portion of the cold
water. Such a pattern provides a favorable condition
for energy transfer from eddy potential energy to eddy
kinetic energy.

The basic structures described above remain for the
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FI1G. 10. Superposition of m; perturbation and the mean frontal structure at horizontal cross sections. Plots of
the temperature and horizontal velocity are at the surface; plots of the vertical velocity are at { = 7/g. Dashed
contours indicate negative values. Quantities are dimensionless except for the surface temperature: (a) corresponds

to front ly; (b) corresponds to front I;.

most unstable mode after including the topography
(lower panels in Fig. 10). The perturbed temperature
has a larger amplitude in the case with the topography
if the same amplitude of the perturbed velocity is as-
sumed. Second, the distance between the cold water
center and the center of cyclonic circulation and the
distance between the cold water center and upwelling
center have changed, which affects the correlation be-
tween the perturbation buoyancy and perturbation ve-
locities.

The second mode along front Iy (upper panels in
Fig. 11), distorts the front in a different manner. The
largest changes of the isotherms occur on the seaward
side of the front because this mode exists farther off-
shore. The mean current is deflected offshore by a cold
anomaly, and it is forced toward the shore in the trailing
portion of a cold anomaly. The southward flow gen-

erated by a cold anomaly is near the axis of the mean
current, and it is not strong enough to counteract the
effects of the mean current. Thus, no cyclonic circu-
lation is formed. Associated with the center of a warm
anomaly, the total velocity shows a double jet with the
stronger one on the seaward side. On the other hand,
the southward flow generated by a cold anomaly is on
the offshore side of the mean current, and it is able to
completely counteract the effect of the mean current
there. Thus, the total flow becomes a stronger but nar-
rower current on the shoreward side. After adding the
topography, there are no qualitative differences in the
basic pattern of m,.

The calculation of energy conversion processes is
based on Egs. (C.7), (C.8), and (C.9) and is displayed
in Fig. 12. The Reynolds stress (RS) represents con-
version between mean kinetic energy and eddy kinetic
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FIG. 11. As in Fig. 10 except for the superposition of m, perturbation and the mean frontal structure.

energy; the horizontal heat flux (HHF) represents con-
version between mean available potential energy and
eddy potential energy, and the vertical heat flux (VHF)
represents the conversion between eddy potential en-
ergy and eddy kinetic energy. Figure 12 shows where
energy conversions occur and their magnitudes. It in-
dicates the sources or sinks of the eddy energies, al-
though the eddy kinetic energy may grow or decay at
locations different from those shown in Fig. 12 because
of possible contributions from pressure work terms.
As observed (Lee et al. 1981; Hood and Bane 1983),
all conversion terms have significant values only within
a very narrow region on the shoreward side of the front.
Second, they are confined to the top of the water col-
umn. The first mode has positive HHF in both the flat
bottom case and the case with the topography. How-
ever, unlike the observed results, RS values are positive
in both cases. Therefore, both barotropic and baroclinic
instabilities contribute to the development of meanders.

HHF and RS have maxima at the surface, but VHF is
zero at the surface because of the rigid-lid approxi-
mation. Reynolds stress is hardly affected by the pres-
ence of the topography. On the other hand, both HHF
and VHF change considerably after including the to-
pography. HHF is reduced in the upper water column,
especially near the inner slope where the maximum
baroclinicity occurs and where the topographic slopes
exceed the slopes of isopycnals at the bottom.

Energy flow diagrams in Fig. 13 are obtained by in-
tegrating over the cross section. The quantities are nor-
malized with respect to the horizontal heat flux of each
mode in the flat bottom case; therefore, energy con-
version processes of each mode are compared between
two cases only when the same amplitude is assumed.
For the first mode, m,, the baroclinic conversion, HHF,
is about three times the barotropic conversion, RS, and
about one-third of the eddy potential energy is trans-
ferred to the eddy kinetic energy through VHF. After
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F1G. 12. Energy conversions of the most unstable wave: (a) associated with front I,
and (b) associated with front I,.

inclusion of topography, the baroclinic conversion is
reduced by almost 40%, so that there is less eddy po-
tential energy converted to the eddy kinetic energy.
The bottom slope is effective only in stabilizing baro-
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F1G. 13. Energy flow diagrams: (a) and (¢) correspond to m, and
m, of front l; (b) and (d) correspond to m; and m, of front I;.

clinic conversion. In fact, barotropic instability is hardly
affected by topography. Therefore, the baroclinic con-
version contributes approximately two-thirds of eddy
energy for the most unstable wave in the case with the
topography.

The energetics of the second mode, m,, is signifi-
cantly different from the first mode. Barotropic insta-
bility is the dominant mechanism for m; and contrib-
utes two-thirds of eddy energy in the flat bottom case
and three-quarters of eddy energy in the case with the
topography. As a result, part of the eddy kinetic energy
is converted to eddy potential energy through negative
VHEF. The conclusion that the bottom slope is effective
only in stabilizing baroclinic instability can be drawn
for m, as well. The baroclinic conversion of m, de-
creases by more than 30% after incorporating the to-
pography. However, barotropic conversion is slightly
enhanced.

¢. Cross section downstream of the Charleston Bump

After application of the same model to the frontal
zones Il and II,, the resultant growth rate and phase
speed spectra are given in Fig. 14 and Fig.15. As with
cross section I, the growth rate spectra at long waves
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FiG. 14. Growth rate spectra (a) and phase speed spectra (b) of
the two most unstable modes growing on front Ily, flat bottom. All
quantities are nondimensionalized according to (2.5).

are similar to quasigeostrophic solutions, and there are
unstable short waves as well. Moreover, except when

the wavenumber is really small, topographic effects also .

reduce the growth rate, increase phase speeds at all
wave numbers, and decrease the wavenumber asso-
ciated with the most unstable wave. Nevertheless, the
growth rate and the phase speed are generally smaller
than those in Figs. 6 and 7.

With this new mean condition, the most unstable
wave in the flat bottom case occurs at wavenumber
3.0 with a growth rate of 0.062. It is equivalent to a
wavelength of 215 km and an e-folding time scale of
2.4 days. The most unstable wave has a phase speed
of 0.038, which corresponds to a dimensional propa-
gation speed of 26.1 km day~'. It is different from the
results of cross section I in that the most unstable wave
on the short-wave side belongs to the third mode, m;.
It has the maximum growth rate of 0.051 at wavenum-
ber 6.5. The second mode, m,, is the second unstable
mode both at short waves and long waves. Phase speeds
of both m, and mj; increase linearly as wavenumber
increases, and mj has a phase speed of 0.062 at wave-
number 6.5. The most unstable wave in the case with
the topography (Fig. 15) occurs at wavenumber 2.8
with a growth rate of 0.047. It is equivalent to a wave-

.length of 225 km and an e-folding time scale of 3.2
days. This wave moves at a phase speed of 0.052, which
corresponds to a propagation speed of 35 km day .
As in the flat bottom case, the most unstable wave on
the short-wave side belongs to m;. It has a maximum
growth rate of 0.041 occurring at wavenumber 6.3, It
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is equivalent to a dimensional wavelength of 100 km.
The phase speed of the m; mode is 0.079, which cor-
responds to a dimensional propagation speed of 53.2
km day . ,

Since m, is the less unstable mode compared to m;
at long-wave lengths and to mj at short-wave lengths,
its mode structure is not shown. Nevertheless, m, has
cross-sectional distributions similar to its cross section
I counterpart and is trapped near the surface.

Figures 16 and 17 are the structure functions for u,
v, and b of m; and m;. Both modes are trapped along
the front; m, exists within the upper one-third of the
water column, which is about the depth of the mean
current. In cross section I, the Gulf Stream extends to
the bottom, as does the most unstable mode. Thus,
the first mode has a vertical scale comparable to the
vertical scale of the Gulf Stream. Generally speaking,
the perturbation signal on the seaward side is stronger
compared to that of cross section I. Changes of m; due
to the topography are similar to those of cross section
I. For the downstream velocity component, the flow
branch on the seaward side expands and is enhanced.
A third flow branch emerges farther offshore so that
this mode has two nodes across the front. In fact, the
type of velocity cross section seen in the upper and
middle panels of Fig. 16b generates anticyclonic cir-
culations on the seaward side of the front associated
with warm anomalies. The upper part of the flow
branch on the shoreward side is less affected by the
topography compared to cross section I, because the
shelf break has a larger depth in cross section II. The
lower part is -again pushed offshore. The amplitude of
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FiG. 15. As in Fig. 14 except for front II;, with bottom topography.
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FiG. 16. The amplitude of perturbed velocities and buoyancy of the first unstable mode, m;:
(a) corresponds to front Ily; (b) corresponds to front II,.

perturbation temperature in Fig. 16b, estimated ac-
cording to equation (4.2), is 3.0°C if the amplitude
of the perturbation velocity is 20% of the maximum
velocity of the mean current, and this agrees with the
observations off the Carolina coast (Bane et al. 1981).
The thir¢ mode, mj, has a vertical scale similar to the
first mode. Of the three modes, it is the farthest from
the coast. Similar to m;, m; forms two circulations
across the front, which are in opposite direction. How-
ever, unlike m,, at the surface m; is stronger on the
seaward side, and it is wider on the shoreward side and
has the maximum below the surface. The structural
changes of mode m; due to topographic effects are
rather small in vertical cross sections.

Figure 18 shows that the m; mode for the II, and
II; fronts is similar. Common features include cold
anomalies on the shoreward side of the front that push
the front offshore so that the cross-front thermal gra-
dient increases. Cyclonic circulations are associated
with the cold anomalies on the shoreward side of the
front where the main body of the mean current shifts
offshore and intensifies. The cyclonic circulation pat-
terns are not symmetric in the alongfront direction.
The large transverse velocity occurs in the leading por-

tion of the cyclonic circulation. Upwelling always leads
the cold anomaly. The strength and the cross-front scale
of the upwelling (downwelling) associated with cold
(warm) temperature anomaly patterns increase after
including the topography. In comparison with their
cross section I counterparts (Fig. 10), the cold anomaly
becomes stronger, and there is a warm tongue extend-
ing southward on the western side of the cold anomaly
in the case with the topography. Although this warm
tongue is different from the observed warm filament,
it at least shows the possible development of an inter-
leaving structure when the amplitude of the pertur-
bation temperature is large enough. The anticyclonic
circulation on the seaward side of the front is very clear,
especially in the case with the topography.

The m; mode in Fig. 19 has a more complicated
cross-front pattern. Anomaly signatures can be seen
on both sides of the front. They are stronger on the
seaward side in the flat bottom case. For this mode,
the cold center leads the cyclonic circulation on the
offshore side of the front but it trails the upwelling.
After including the topography, perturbation signals
on the shoreward side of the front become stronger
than those on the seaward side. The relative pattern
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FIG. 17. As in Fig. 16 except for the third mode, m;.

among the cold center, the cyclonic circulation, and
the upwelling remains.

Energy conversions of the m; mode (Fig. 20) have
significant values only within a narrow region on the
shoreward side of the mean current, although they have
larger scales in the cross-front direction compared with
those of cross section I because cross section II is wider.
HHF and RS are positive in both cases so that both
barotropic and baroclinic instabilities operate simul-
taneously for this unstable mode. Generally speaking,
changes due to the topography are similar for both cross
sections. HHF and VHF have considerable changes
when the topography is added. Reynolds stress is hardly
affected, whereas both HHF and VHF are reduced,
especially near the shelf break.

Energy flow dlagrams in Fig. 21 agam show a no-
ticeable decrease in baroclinic conversion after inclu-
sion of topography. In the flat bottom case, the baro-
clinic conversion of m, is about seven times the baro-
tropic conversion, and there is a considerable amount
of eddy potential energy converted to the eddy kinetic
energy. The baroclinic conversion is reduced by more
than 20%, and the barotropic conversion increases
slightly by adding the topography. Therefore, baroclinic
instability accounts for approximately 80% of eddy en-

ergy for the most unstable wave in the case with the
topography. The third mode, m;, is different from both
m, and m, in terms of its energetics. It generates coun-
tergradient momentum flux so that RS is negative.
Baroclinic instability is the only mechanism operating
with m3. Nevertheless, it is still true that the topography
reduces the baroclinic instability.

5. Discussion

a. Stabilizing effects of the bottom topography on
baroclinic instability

Four individual frontal zones have been studied.
Growth rates of the most unstable wave associated with
these four frontal zones are summarized in Table 3. It
is clear that the topography is a stabilizing factor for
baroclinic instability. Barotropic instability is enhanced
slightly according to the present study.

HHF cross-sectional distributions in Fig. 12 and Fig.
20 show that the baroclinic energy conversion is most
reduced near the inner slope where the topographic
slopes exceed the isopycnic slopes at the bottom. The
stabilizing effect of the bottom slope on baroclinic in-
stability can be explained as follows: for baroclinic
waves to draw energy from the mean available potential
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FiG. 18. Superposition of m, perturbation and the mean frontal structure at horizontal cross sections. Plots of
the temperature and horizontal velocity are at the surface; plots of the vertical velocity are at { = 7. Dashed
contours indicate negative values. Quantities are dimensionless except for the surface temperature: (a) corresponds

to front Ily; (b) corresponds to front II,.

energy, the orientation of the particle paths is between
the horizontal and the isopycnals. Since motions are
constrained along the bottom topography, cold water
is forced upward in the region where the topographic
slopes are larger than the slopes of isopycnals. Thus,
the loss of the mean potential energy due to baroclinic
waves 1s partly balanced by the increase of the mean
potential energy due to upwelling of cold water near
the bottom. Therefore, bottom slope is effective in sta-
bilizing the deeper portion of the water column in such
regions.

Despite the stabilizing effect of the continental slope,
the Gulf Stream is indeed unstable, as evidenced in
Table 3. Tae question is whether perturbations are able
to grow into large meanders with the calculated growth
rate. One important issue, ignored thus far, is that the
SAB has a limited length. One should estimate the am-

plification within the time duration that meanders ac-
tually spend in the SAB. Gaster (1962 ) has shown that
if the growth rate is small compared to the frequency
of an unstable mode as for Gulf Stream meanders, the
frequency for a disturbance growing with respect to
time is the same as that of a spatially growing wave
having the same wavenumber. Spatial growth is related
to the time growth by the group speed. Based on his
concept of quantitatively relating the spatial growth to
the temporal growth of unstable waves, we define a
total amplification factor as follows:

T = e~ ollo/Gow, (5.1)
where —o¢; and C,;, are the dimensional growth rate
and phase speed given in Table 3; L, is the length of
the SAB, which is chosen to be 300 km for both parts
of the SAB upstream and downstream of the Charleston
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FiG. 19. As in Fig. 18 except for the superposition of m; perturbation and the mean frontal structure.

Bump. The estimated total amplification factors of each
frontal zone are given in the last column of Table 3.
Though the reduction in growth rate is no more than
40%, the total amplification factor reduces considerably
after the topography is incorporated due to the com-
bined effects of the reduction in growth rate and the
increase in phase speed. Therefore, models with a flat
bottom, such as that by Oey (1988), are able to produce
finite amplitude meanders, but it is less likely that ran-
dom perturbations would grow into substantial mean-
ders in the SAB because of the stabilizing effects of the
continental slope.

b. Mechanism of unstable short waves

The full hydrostatic primitive equations yield two
distinct and well-separated length scales of baroclinic
instability (Stone 1970; Moore and Peltier 1987; Nak-
amura 1988). The first 'scale is associated with the
Charney-Eady mode of baroclinic instability, and the

second scale is defined by a new mode of baroclinic
instability with a shorter wavelength approximately
equal to the Rossby radius of deformation.
Nakamura ( 1988 ) showed that unstable short waves
emerge at wavenumbers where inertial critical levels
appear inside the domain. This is also the point where
the Eady’s neutral mode and the neutral inertial-gravity
mode coalesce. Therefore, the difference between un-
stable long waves and unstable short waves is that the
former is produced by a coupling between two bound-
ary modes and the latter is produced by a coupling
between one boundary mode and inertial-gravity
modes. The main energy source of unstable short waves
is still baroclinic conversion of potential energy, which
takes place between one of the boundaries and the crit-
ical level. The unstable short-wave solution of Stone
(1970) and Nakamura (1988 ) may not be directly rel-
evant to the strong cyclogeneses in the atmosphere since
the growth rate is far smaller than that of the Eady
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FI1G. 20. Energy conversions of the most unstable wave (a) associated with front II; and
(b) associated with front II,.

mode. However, short waves generally become more
unstable as the cross-front wavenumber increases
(Stone 1970).

Flat Bottom Topography
m,
(a) (b)
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FIG. 21. Energy flow diagrams: (a) and (c) correspond to m; and
m; of front Ily; (b) and (d) correspond to m; and m; of front II,.

Moreover, the cross-front gradient of the mean po-
tential vorticity also generates unstable, short-wave
branches (McIntyre 1970). The critical layer theory
shows that there is a tendency for baroclinic waves to
generate a countergradient momentum flux. Therefore,
the growth rate of Charney-Eady mode is reduced in
both Moore and Peltier (1987) and in the present study
after taking into account the cross-front gradients. Both
long-wave branches and short-wave branches have
comparable growth rates. Numerical experiments in-
dicate that the short-wave instability becomes stronger
when the front is narrower than the radius of defor-
mation.

TABLE 3. Characteristics of the most unstable wave and its energy
conversions for the four frontal zones; A is the wavelength. Given in
the last column is the total amplification factor 7.

Con A
Front —o¢/f (kmd™*) (km) HHF VHF RS T
Io 0.088 30.8 185 1.000 .328 .339 2179
I, 0.055 393 215 624 (189 .350 14.0
108 0.062 26.1 215 1.000 .335 .142 105.0
I, 0.048 35.0 225 789 262 188 15.9
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Both mechanisms can be found in the unstable short
waves of the present study. The second mode, m,, is
similar to the cyclone-scale mode in Moore and Peltier
(1987); they are boundary trapped, and the vertical
scale is determined by the critical level, as explained
by Nakamura (1988). However, the horizontal velocity
gradient favors barotropic instability. Thus, the resul-
tant unstable modes have growth rates comparable to
unstable long waves, but barotropic instability is dom-
inant. On the other hand, m; is the type of unstable
short wave discussed by MclIntyre (1970). It has the
same vertical scale as the unstable long waves and yet
has a countergradient momentum, that is, a nega-
tive RS. .

Both m; and m; structure functions are stronger on
the seaward side of the front. It is likely to associate
them with wavy patterns seen along the Sargasso Sea
side of the Gulf Stream front (Fig. 1). Since those fron-
tal structures are not well documented in the literature,
it is inappropriate to make any further comparisons.

6. Conclusions

The most important influence of the continental
slope on the Gulf Stream is to reduce baroclinic insta-
bility associated with the front. Second, the wavelength
of the most unstable wave increases, the corresponding
phase speed increases, and the variation of the phase
speed with the alongfront wavenumber is reduced so
that each unstable mode is less dispersive in the case
with the topography.

Table 3 lists characteristics of the most unstable
wave. If fronts I; and II; represent the averaged Gulf
Stream front upstream and downstream of the
Charleston Bump, the increase of wavelength from 215
to 225 km and the decrease of phase speed from 39.3
to 33.7 km day ! agree with observed meander char-
acteristics and their changes along the SAB (Lee et al.
1981; Bane 1983). The present study suggests that at
least part of the changes of the meander characteristics
along the SAB are due to the changes of properties of
the most unstable wave associated with the different
mean conditions of the Gulf Stream at various locations
along the SAB.

Generally speaking, this linear and inviscid model
successfully explains the preferred scales of Gulf Stream
frontal meanders not only in terms of wavelength and
phase speed but also in terms of mode structures. First
of all, the most unstable wave appears on the cyclonic
shear side of the front. For this mode, a cyclonic cir-
culation and upwelling lead a cold anomaly, and this
is the basic structure of the cold water dome observed
on the shoreward side of the Gulf Stream front. Second,
mode structures associated with the most unstable wave
give a good estimate of the temperature change relative
to observed changes of the perturbation velocity. For
instance, if the maximum velocity of the unstable
wave is 20% of the maximum velocity of the Gulf
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Stream, the estimated amplitude of temperature vari-
ation is 2.5°C for cross section I and 3.0°C for cross
section II. '

However, the shape of the cold water and the warm
filament is different between the numerical results and
the observed meanders. First of all, the observed cold
water has comparable scales in the alongfront and in
the cross-front directions, whereas in the model the
cold water has an alongfront scale about four to five
times its scale in the cross-front direction. Second, al-
though there is an indication of a warm tongue for-
mation when an anomaly is strong enough, as shown
in Fig. 18, the alongfront scale of this warm tongue
can hardly compare with the observed scale of warm
filaments. Nevertheless, the existence of such warm
tongues at least provides the possibility of being de-
veloped into features similar to those observed due to
nonlinear evolution, as explained by Stern (1985). If
the warm filaments can extend southward substantially,
the cold water found in the linear solution may be-
come less elongated and may result in more realistic
meander patterns.
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APPENDIX A
Residual Equations and Definitions

a. The residual equations

N
R, =2 [(a + RoBV)u,E, — v, E,
r=0
ap, oh '
—({—-1)— A.l
+h o E - (§ )6xb”F”} (A.la)
N
R =3 [a + RoBV)V,E, — (1 + RoV)u,E,
v=0

— RoVw,F, + ﬂhp,E,} (A.1b)

N
R3 = E {vav + prqu} (A.lc)
v=0
N (du
Ry= 2 [ *E, — Bv,E, + vrw,E,} (A.1d)
oo L Ox
N
Rs = > {(o + RoBV)b,F,
=0
— SB.u,E, — SBiw,F,}. (A.le)

Equations, (A.la), (A.1b), and (A.le) are prognostic
equations; (A.1c) and (A.1d) are diagnostic equations.



NOVEMBER 1993

b. Definition of the matrix P, J5o,, and M7},

T A 2
= TR W) + gy Lo

P:'yIP'y)\ = 6:()\ (AZ)

S N B2\ 4xmody(y — \)
N0 ( (1+8,0) B(Y:*—A)7

Rop (1

P’Y

+ | W BV Eo) )

+ ([¢~,<E0VXE0>¢>\]

_)\_Izr [¢7<E0VE0>¢x])/(1 + 570)} (A.3a)

P, =5 [1’1 [V (EoVE, Y0n)]
([¢,<E0V Eyl -
X [¢7<E0V§F,,>q'>,\])/(1 + 570)] (A.3b)
P = mi‘f%) ([¢7<E0VE,>¢X]
- Lﬂ_ [¢7<E0VS~F,,>¢>)\]) (A.3c)
iow =~ ¥, he] (A.3d)
Mip =~ ey WKCEVEID] + Lot
(A.4)
M = b e 4 Lo (A)
M, = %%2 (W hen]
2t 2y ) + ot (AS)
M, = W {0 EVE D] + T}
s
Mo = - (%"?E [[¢K<E,‘VE,>¢A1

1
_;[¢K<E‘LV!'FV>¢)\]] (A'S)
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6 6uv 6

S A.
Mxy)\u [.l,ﬂ'(l + 6,(0) [¢Kh¢)\] ( 9)
S
Ml = TETN {Con [ HyBxEo)¥a] — Lin }
(A.10)
M?E - B 1 ¢ (HyB:E,Ydr] (A.11)
A S S O e
M2, = —Ri—c o (HVEY$] (A.12)
T (L +8e) T
[ 4x mod,(x — \) _I_M)
kK2—A)m \B L
Lo=1{ + sf (Wb 1P Tho0, v =0 (A.13)
e [‘P h‘bs]PS‘le‘yO)\va v= 1
IxO)\v [‘pkth]Ps;JyOM) (A'l4)
IxO)\v - hb h\bs]Px'le‘yO)w (A.lS)
AT
- [¢K<E“VE0>¢X], y=0
I = N (A.16)
T
—;—[¢K<E ViFYé], v=1
0, v=0
ILnw={ 1\
R I e URE: 8 STN RS
(A.17)
APPENDIX B

Mapping and Definition of Matrix E

Given the triangular truncation scheme (¢ = 1, 2,
- N,k=1,2, +++- N— pu), we define
Lk, ) = pN —p(p — 1)/2 + «
for 0O<su<N;, 1<
ip(k, ) = (N + 1)(p — 1)
—wlp—1)/2+x+1
for Il<su<N, 0<sxk<N-—u (B2)

Equation (B.1) is used because the expansion of #
does not include «x = 0, while (B.2) is needed because
the expansion of b does not include ¢ = 0 and v, does
not form a prognostic equation due to (2.15a). The
total number of elements in E will be

k<N—pu (B.l)
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NE = NPU + NPV + NPB and
NPU = NPV =NPB=(N+1)N/2.

The one-dimensional vector V is defined as

(B.3)

for j=1i,(x, p
=1, for j=NPU-+ ip(k, p) _
=b, for j=NPU+ NPV +iu(x;pu). (Bd4)

The matrix E is defined as follows:

Vj = Uy

Eij = M;lu)\u fOI' i= iu(K5 ﬂ)’] = iu(xy V)
= Mfu)\v for l: iu(Ka I'L)’.] = NPU+ ivb()\9 V)
= M3, for

i =ik, n),j = NPU + NPV + i(\, v)
= M., i = NPU + in(k, p), j = iu(\, )
= M;,, for

i = NPU + in(x, p), j = NPU + ipp(X, v)
i = NPU + ip(x, ),

j = NPU + NPV + in(, v)

for

= Mg for

for
i = NPU + NPV + in(k, 1), = iu(\, v)
i = NPU + NPV + in(x, p),
j = NPU + iw(\, v)
= M, for i= NPU+ NPV + iw(k, p),
j = NPU + NPV + iy(\, »).

— 7
- qu)\y

o  for

(B.5)

APPENDIX C

Mode Structures and Energetics

a. Transformation from spectral space
to physical space

Eigenvectors obtained after solving (2.18) are in
spectral space. They are transformed to the physical
space according to

N N—p
#x, )= 3 S X(iulk, w)) cos(url) sin(@‘)

u=0 =1 L

(C.1)

N—u

56 0= 2 LT X o + 3 S
oex, g‘)—{K=1BL hlto u=1 k=0

KTX

X (NPU + iyp(k, n)) cos(/.nrg')] cos(—L—) (C.2)
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. N N-pu
b(x,{)= 2 2 X(NPU + NPV + ip(x, u))
u=1 «=0

X sin(pr) cos(fz—x). (C.3)

Here, iy, iy, NPU, and NPV are provided by (B.1),
(B.2), and (B.3) in appendix B. Therefore, according
to (2.6),

u = ty(x, {)cos(By + o,t + ¢,)- e (C.4a)
v ==D(x, {)sin(By + o, + ¢,)- €™  (C.4b)
b= —b.(x, {)sin(By + o,t + ¢p)- €%, (C.4c)

where the amplitude and the phase are defined as fol-
lows:

&a(x, §) = (g + &' (C.5a)
¢ = arctan(g;/&,). (C.5b)

Here, g represents either #, ¥, or b; &, and ¢, are the
amplitude and the phase of g; £, and &; are real and
imaginary parts of g.

b. Energetics of unstable modes

Equations for alongfront averaged perturbation ki-
netic and potential energy can be obtained from (2.1):

3 u? + v?

ot 2h
ouw ovr  Oww N
(8x ay+a§) °(h”” hv“’)

+(§— 1)%%%+E (C.62)

2 [ —_—
(9( b )=—££ub—wb. (C.6b)

or\25B; B,

The term on the right-hand side of (C.6a) and (C.6b)
are possible sources and sinks of perturbation energies.
The first term on the right-hand side of (C.6a) repre-
sents pressure work; it does not contribute to the cross-
sectional averaged kinetic energy. The Reynolds stress
term, the conversion of the mean kinetic energy to
eddy kinetic energy, is defined as

Ve _

Vg-_
RS=-Rol—uw+—vw]. (C.7)

h h

The vertical and horizontal heat flux correlations
represent the conversion of the eddy potential energy
to the eddy kinetic energy and the conversion of the
mean potential energy to the eddy potential energy,
respectively:
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TABLE D.1. Comparison of wave frequency in a flat bottom channel between the analytic and numerical solutions.
This calculation is based on 8 = 6.0, L = 4.0 and S = 1.0.

v/
1/0 172 2/0 2/2 3/0 3/2
Analytic 1.9099 2.2130 0.9549 1.4051 0.6366 1.1971
M=N=10 1.9099 2.2128 0.9549 1.4034 0.6366 1.1936
M=N=15 1.9099 2.2130 0.9549 1.4050 0.6366 1.1968
M=N=20 1.9099 2.2130 0.9549 1.4051 0.6366 1.1970

VHF=E+(§—1)1@-% (C.8)
h ox
oh B.\1—
HHF_(“—_I)&_E)Zub. (C9)

A mean state is said to be baroclinically unstable in
the case that waves grow due to positive horizontal and
vertical heat fluxes, whereas it is said to be barotropi-
cally unstable in the case that waves grow due to pos-
itive Reynolds stresses. Frontal zones under consid-
eration have nontrivial variations in both horizontal
and vertical directions, and as a result, both mecha-
nisms will in general be operational.

APPENDIX D

Verification of the Model
a. Stable wave solutions in a flat bottom channel

We consider a flat bottom channel and assume no
mean flow and uniform stratification. Analytical so-
Iutions are provided for comparison. The barotropic
solution is characterized by ¢ = £1; corresponding ei-
gen functions are indeterminable. However, there are
two sets of baroclinic solutions. The first is the coastal
trapped Kelvin waves, characterized by « = 0. Their
frequencies are o, = iVS'ﬁmr ande;=0,v=1,2, « ¢ +.
The second solution is the Poincaré waves that span
across the channel:

2 2
03=1+”—S2|:(§) +(%)] and ;=0

A>0,r=1,2,--+). (D.1)

In all numerical calculations g; is zero for every
mode; A = 0 corresponds to coastal trapped Kelvin
waves, and their frequencies are calculated with a very
high accuracy even for a low truncation level. Fre-
quencies of Poincaré waves are calculated with small
errors, but these errors decrease as the truncation level
increases, as shown in Table D.1. Overall, the error is
the order of 107 for the first few modes. Generally
speaking, the model is very successful in capturing
mode structures.

b. Cross-channel topographic gradient

We again consider a channel with no mean flow,
but a topographic gradient is included so that B, = ({
— 1)(dh/dx)N? and B, = N?h(x). Such a system
should be stable because there are no energy sources.
However, numerical results generally show a few modes
with rather small growth rates. Numerical calculations
are based on A(x) = h, — h, cos(zxx/L), N> =1, so
that the derivatives and integrals can be easily calcu-
lated analytically without introducing errors. Two pos-
sible sources of error in the calculation are 1) the trun-
cation error and 2) ¢, the error induced by the incon-
sistency of the lower boundary condition. Although
the collocation scheme used in the buoyancy equation
avoids obvious violation of the boundary condition
(2.8b) and the Gibbs phenomenon inside the domain,
it does not resolve the gap between the boundary and
the first collocation point; ¢, depends upon the value
of B, at the bottom; thereby, it depends upon the bot-
tom slope and the stratification. Moreover, it may in-
crease as the truncation level increases because the first
collocation point becomes closer to the lower boundary
where the boundary condition is not completely sat-
isfied. Experiments with various topographies and
stratifications have been accomplished to determine
the range of ¢,. Generally speaking, ¢, increases as the
bottom slope increases. However, the relationships be-
tween ¢, and stratification or truncation are not so ob-
vious. What is important is that in all experiments ¢,
is less than 103! Therefore, the error induced by the
inconsistency of the lower boundary constraint will not
significantly affect the discussion of the Gulf Stream
stability since the growth rates is at least one or two
orders larger.
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